Online Bayesian Phylogenetic Inference: Theoretical Foundations via Sequential Monte Carlo

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Bayesian phylogenetic inference: theoretical foundations via Sequential Monte Carlo.

Phylogenetics, the inference of evolutionary trees from molecular sequence data such as DNA, is an enterprise that yields valuable evolutionary understanding of many biological systems. Bayesian phylogenetic algorithms, which approximate a posterior distribution on trees, have become a popular if computationally expensive means of doing phylogenetics. Modern data collection technologies are qui...

متن کامل

Phylogenetic Inference via Sequential Monte Carlo

Bayesian inference provides an appealing general framework for phylogenetic analysis, able to incorporate a wide variety of modeling assumptions and to provide a coherent treatment of uncertainty. Existing computational approaches to bayesian inference based on Markov chain Monte Carlo (MCMC) have not, however, kept pace with the scale of the data analysis problems in phylogenetics, and this ha...

متن کامل

Bayesian Phylogenetic Inference using a Combinatorial Sequential Monte Carlo Method

The application of Bayesian methods to large scale phylogenetics problems is increasingly limited by computational issues, motivating the development of methods that can complement existing Markov Chain Monte Carlo (MCMC) schemes. Sequential Monte Carlo (SMC) methods are approximate inference algorithms that have become very popular for time series models. Such methods have been recently develo...

متن کامل

Bayesian phylogenetic inference via Markov chain Monte Carlo methods.

We derive a Markov chain to sample from the posterior distribution for a phylogenetic tree given sequence information from the corresponding set of organisms, a stochastic model for these data, and a prior distribution on the space of trees. A transformation of the tree into a canonical cophenetic matrix form suggests a simple and effective proposal distribution for selecting candidate trees cl...

متن کامل

Massively Parallel Sequential Monte Carlo for Bayesian Inference

This paper reconsiders sequential Monte Carlo approaches to Bayesian inference in the light of massively parallel desktop computing capabilities now well within the reach of individual academics. It first develops an algorithm that is well suited to parallel computing in general and for which convergence results have been established in the sequential Monte Carlo literature but that tends to re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Systematic Biology

سال: 2017

ISSN: 1063-5157,1076-836X

DOI: 10.1093/sysbio/syx087